Being an Synthetic Organic Chemist, I spent the past weeks synthesizing several compounds and here's the ε

A. Determine the Empirical Formulae:

1. $\mathrm{H} \quad 2.055 \% \quad 2.055 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=2.039 \mathrm{M} \quad 2.039 \mathrm{M} / 1.020 \mathrm{M}=1.999 \quad=2$
$\mathrm{S} \quad 32.70 \% \quad 32.70 \mathrm{~g} / 32.07 \mathrm{~g} / \mathrm{M}=1.020 \mathrm{M} \quad 1.020 \mathrm{M} / 1.020 \mathrm{M}=1 \quad=1$
O $\quad 65.25 \% \quad 65.25 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=4.078 \mathrm{M} \quad 4.078 \mathrm{M} / 1.020 \mathrm{M}=3.998 \quad=4$
$\mathrm{H}_{2} \mathrm{SO}_{4}$
2. $\mathrm{C} \quad 59.96 \% \quad 59.96 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=4.993 \mathrm{M} \quad 4.993 \mathrm{M} / 1.664 \mathrm{M}=3.001=3$
$\mathrm{H} \quad 13.42 \% \quad 13.42 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=13.31 \mathrm{M} \quad 13.31 \mathrm{M} / 1.664 \mathrm{M}=7.999=8$
O $\quad 26.62 \% \quad 26.62 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=1.664 \mathrm{M} \quad 1.664 \mathrm{M} / 1.664 \mathrm{M}=1 \quad=1$
Isopropyl Alcohol / Rubbing Alcohol $=\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}=\quad \mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}} \mathbf{O}$
3. A 3.450 g of a sample of nitrogen reacts with 1.970 g of Oxygen.
3.450 g N
$3.450 \mathrm{~g} / 14.01 \mathrm{~g} / \mathrm{M}=0.2463 \mathrm{M}$
$0.2463 \mathrm{M} / 0.1231 \mathrm{M}=2.001$
1.970 g O
$1.970 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=0.1231 \mathrm{M}$
$0.1231 \mathrm{M} / 0.1231 \mathrm{M}=1$
$\mathrm{N}_{2} \mathrm{O}$
4. An organic chemical gives the following analysis:

5.667 g Carbon	$5.667 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=0.4719 \mathrm{M}$	$0.4719 \mathrm{M} / 0.1570 \mathrm{M}=3.006$
0.3165 g Hydrogen	$0.3165 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=0.3140 \mathrm{M}$	$0.3140 \mathrm{M} / 0.1570 \mathrm{M}=2$
5.566 g Chlorine	$5.566 \mathrm{~g} / 35.45 \mathrm{~g} / \mathrm{M}=0.1570 \mathrm{M}$	$0.1570 \mathrm{M} / 0.1570 \mathrm{M}=1$
	Ethyl Chloride $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}$	$\mathbf{\mathbf { C } _ { \mathbf { 3 } } \mathbf { H } _ { \mathbf { 2 } } \mathbf { C l }}$

5. $\mathrm{Cu} \quad 66.75 \% \quad 66.75 \mathrm{~g} / 63.55 \mathrm{~g} / \mathrm{M}=1.050 \mathrm{M} \quad 1.050 \mathrm{M} / 0.3500 \mathrm{M}=3$
$\mathrm{P} \quad 10.84 \% \quad 10.84 \mathrm{~g} / 30.97 \mathrm{~g} / \mathrm{M}=0.3500 \mathrm{M} \quad 0.3500 \mathrm{M} / 0.3500 \mathrm{M}=1$
O $\quad 22.41 \% \quad 22.41 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=1.401 \mathrm{M} \quad 1.401 \mathrm{M} / 0.3500 \mathrm{M}=4.003$
$\mathbf{C u}_{3} \mathrm{PO}_{4}$

1/21/2008
1 of 6
6:48 PM
6. A compound containing only Carbon, Hydrogen and Oxygen gives the following analysis:

$$
\begin{array}{llrl}
\mathrm{C} & 40.00 \% & 40.00 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=3.331 \mathrm{M} & 3.331 \mathrm{M} / 3.331 \mathrm{M}=1 \\
\mathrm{H} & 6.700 \% & 6.700 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=6.647 \mathrm{M} & 6.647 \mathrm{M} / 3.331 \mathrm{M}=1.995 \\
\mathrm{O} & 100 \%-40.00 \%-6.700 \%=59.33 \% \mathrm{O} & \\
& & 53.30 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=3.331 \mathrm{M} & 3.331 \mathrm{M} / 3.331 \mathrm{M}=1
\end{array}
$$

$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}=12.01+2 * 1.008+16.00=30.03 \mathrm{~g} / \mathrm{M}$
The Molar Mass is between 115 and $125 \mathrm{~g} / \mathrm{mole}$. What is the Empirical and Molecular formulae.

$$
2 * 30.03=30.06 \quad 3 * 30.03=90.09 \quad \underline{\mathbf{4}} \mathbf{* \mathbf { 3 0 . 0 3 } = \mathbf { 1 2 0 . 1 2 }} \quad \mathbf{4} * \mathbf{C}_{\mathbf{1}} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{1}}=\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{4}}
$$

7. An organic compound containing only $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O has the following analysis

C	49.47%	$49.47 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=4.119 \mathrm{M}$	$4.119 \mathrm{M} / 1.03 \mathrm{M}=3.999$
H	5.191%	$5.191 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=5.149 \mathrm{M}$	$5.149 \mathrm{M} / 1.03 \mathrm{M}=4.999$
N	28.86%	$28.86 \mathrm{~g} / 14.01 \mathrm{~g} / \mathrm{M}=2.060 \mathrm{M}$	$2.060 \mathrm{M} / 1.03 \mathrm{M}=2$
O	$100 \%-49.47 \%-5.191 \%-28.86 \%=16.48 \% \mathrm{O}$		
	$16.48 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=1.03 \mathrm{M}$	$1.03 \mathrm{M} / 1.03 \mathrm{M}=1$	
			$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$

$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}=4 * 12.01+5 * 1.008+2 * 14.01+16.00=90.09$
The approximate molar mass is 194. What is the Empirical and Molecular formulae.

$$
2 * 90.09=192.18 \quad \mathbf{2} \mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{5}} \mathbf{N}_{\mathbf{2}} \mathbf{O}=\mathbf{C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 0}} \mathbf{N}_{\mathbf{4}} \mathbf{O}
$$

B. Determine the following [Show all math with canceled units and balanced equations]:

1. From the hood experiment, we learned that natural gas, Methane, will burn form carbon dioxide and wate formed from burning 50 g of Methane?

2. Sodium Hydroxide is used in rebreathers units to absorb carbon dioxide. The reaction of sodium hydroxir produces sodium carbonate and water. As we all know, since water is produced, the reaction will go to comr of sodium hydroxide is needed to react with 1 pound of carbon dioxide? How much Sodium Carbonate is 1
A. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ [Carbonic Acid]

Strong Base Weak Acid Sodium Carbonate Forms water - a driving force
 B. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{CO}_{3}$-> $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Replace the $\mathrm{H}_{2} \mathrm{CO}_{3}$ in \mathbf{B} with the Carbonic Acid in \mathbf{A} above:

$\underset{\mathrm{X}}{2 \mathrm{NaOH}}+$	$\mathrm{a}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Na} 2 * 22.99=45.98 \mathrm{~g} / \mathrm{r}$
		C 1* $12.01=12.01 \mathrm{~g} / \mathrm{/}$
$\mathrm{Na} 2 * 22.99=45.98 \mathrm{~g} / \mathrm{M}$	C $1 * 12.01=12.01 \mathrm{~g} / \mathrm{M}$	O $3 * 16.00=48.00 \mathrm{~g} / \mathrm{M}$
$\mathrm{O} \quad 1 * 16.00=16.00 \mathrm{~g} / \mathrm{M}$	O $2 * 16.00=32.00 \mathrm{~g} / \mathrm{M}$	$\mathrm{Mw} \mathrm{Na} 2 \mathrm{CO}_{3}=195.99 \mathrm{~g} /$.
$\begin{gathered} \mathrm{H} 1 * 1.008=1.008 \mathrm{~g} / \mathrm{M} \\ \mathrm{Mw} \mathrm{NaOH}=62.99 \mathrm{~g} / \mathrm{M} \end{gathered}$	$\mathrm{Mw} \mathrm{CO}_{2}=44.01 \mathrm{~g} / \mathrm{M}$	

$1 \mathrm{lb}=453.6 \mathrm{~g}$ of carbon dioxide

$\frac{453.4 \mathrm{~g} \mathrm{CO}_{2}}{44.01 \mathrm{~g} / \mathrm{M}}=$	$\frac{\mathrm{X}}{62.99 \mathrm{~g} / \mathrm{M}}$	$\mathrm{X}=\mathbf{6 4 8 . 9} \mathbf{g ~ N a O H}=\mathbf{6 0 0} \mathrm{g} \mathrm{NaOH}[1$ sign digit $]$
$\frac{453.4 \mathrm{~g} \mathrm{CO}_{2}}{44.01 \mathrm{~g} / \mathrm{M}}=$	$\frac{\mathrm{X}}{195.99 \mathrm{~g} / \mathrm{M}}$	$X=\mathbf{2 0 1 9 . 1 2} \mathrm{g} \mathrm{Na}_{2} \mathrm{CO}_{\mathbf{3}}=\mathbf{2 0 0 0} \mathbf{g}[\mathbf{1}$ sign digit]

1/21/2008
3. Baking Soda will is slightly basic and will react with vinegar to form sodium acetate, water and carbon di complete balanced reaction. How many grams of vinegar is needed to react with a one pound box of baking

Baking Soda $=$ Sodium Bicarbonate $=\mathrm{NaHCO}_{3} \quad$ Vinegar $=$ acetic acid $=\mathrm{H}_{3} \mathrm{C}-\mathrm{COOH}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ Sodium Acetate $=\mathrm{H}_{3} \mathrm{C}-\mathrm{COO}^{-} \mathrm{Na}^{+}=\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

```
Baking Soda Vinegar Sodium Acetate
NaHCO
1 Lb ? |--------------------------------------
Na 1*22.99 = 45.98 g/M C 2 * 12.01 = 24.01 g/M
H 1* 1.008=1.008 g/M H 4 * 1.008=4.032 g/M
C 1* 12.01 = 12.01 g/M O 2* 16.00 = 32.00 g/M
O 3*16.00 = 48.00 g/M Mw C2H4 O
Mw NaHCO
```

$\frac{453.6 \mathrm{~g} \mathrm{NaHCO}_{3}}{107.0 \mathrm{~g} / \mathrm{M}}=\frac{\mathrm{x}}{60.015 \mathrm{~g} / \mathrm{M}} \quad \mathrm{X}=\mathbf{2 5 4 . 5 6} \mathrm{g}$ Vinegar $=\mathbf{3 0 0} \mathrm{g}$ [1 Sign Figure]
4. 1.00 g of Hydrogen reacts with Oxygen to form water. 1.00 g of Hydrogen also can react with Nitrogen t Calculate the amounts of water and ammonia formed in each reaction?

```
\(2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\)
1 g ?
    H 4* \(1.008=4.032 \mathrm{~g} / \mathrm{M}\)
    \(\mathrm{O} 2 * 16.00=32.00 \mathrm{~g} / \mathrm{M}\)
        \(\mathrm{Mw} 2 \mathrm{H}_{2} \mathrm{O}=36.032 \mathrm{~g} / \mathrm{M}\)
\(\mathrm{H} 4 * 1.008=\mathbf{4 . 0 3 2} \mathbf{g} / \mathbf{M}\)
\(\frac{1 \mathrm{~g}}{4.032 \mathrm{~g} / \mathrm{M}}=\frac{\mathrm{X}}{36.032 \mathrm{~g} / \mathrm{M}} \quad \mathrm{X}=\mathbf{8 . 9 4} \mathbf{g}\) Water [ 3 Sign Digits ]
```


5. From the above equations, 1.00 g of Hydrogen is reacted with 1.00 g of Oxygen. What reactant is in exce

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2}->2 \mathrm{H}_{2} \mathrm{O}
$$

$1 \mathrm{~g} \quad 1 \mathrm{~g}$
| $\mathrm{O} \quad 2 * 16.00=\mathbf{3 2 . 0 0} \mathbf{g} / \mathbf{M}$
H $4 * 1.008=4.032 \mathbf{g} / \mathbf{M}$
$\mathrm{H}=\frac{1 \mathrm{~g}}{4.032 \mathrm{~g} / \mathrm{M}}=\mathbf{0 . 2 4 8} \mathbf{M}\left[\mathbf{3 ~ S i g n ~ D i g i t s ~]} \quad \begin{array}{l}\mathrm{O}=\frac{1 \mathrm{~g}}{32.00 \mathrm{~g} / \mathrm{M}} \quad=\mathbf{0 . 0 3 1 3} \mathbf{M}[\mathbf{3 ~ S i}\end{array}\right.$

There is more Molar Ratios of Hydrogen then Oxygen, so Hydrogen is in xcs.

$$
0.248 \mathrm{M} \mathrm{H}-0.0313 \mathrm{M} \mathrm{O}=\mathbf{0 . 2 1 7} \mathbf{~ M ~ H} \text { in xcs. }
$$

6. Aluminum reacts with Chlorine to form Aluminum Chloride. How much Aluminum Chloride is producer Aluminum assuming a 75% reaction yield?

75\%
$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$-----> $2 \mathrm{AlCl}_{3}$

$4.94 \mathrm{~g} \mathrm{AlCl}_{3}$ at 75% Yield $=4.94 \mathrm{~g} * 0.75=\mathbf{3 . 7 0 7} \mathbf{g ~ A l C l}_{3}$ [$\mathbf{4}$ Sign Digits]

1/21/2008
5 of 6
6:48 PM
7. Phosphorous Tri Chloride will react with water to produce Phosphorous Acid. What is the Theoretical Yi Phosphorous Tri Chloride?

$$
\begin{aligned}
& \mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}----->\mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl} \\
& 5.000 \mathrm{~g} \text { ? --------------| } \\
& \mathrm{P} \quad 1 * 30.97 \mathrm{~g} / \mathrm{M}=30.97 \mathrm{~g} / \mathrm{M} \quad \mathrm{H} 3 * 1.008 \mathrm{~g} / \mathrm{M}=3.024 \mathrm{~g} / \mathrm{M} \\
& \mathrm{Cl} 3 * 35.45 \mathrm{~g} / \mathrm{M}=106.35 \mathrm{~g} / \mathrm{M} \quad \mathrm{P} 1 * 30.97 \mathrm{~g} / \mathrm{M}=30.97 \mathrm{~g} / \mathrm{M} \\
& \mathrm{Mw} \mathrm{PCl}_{3}=137.32 \mathrm{~g} / \mathrm{M} \quad \mathrm{O} 3 * 16.00 \mathrm{~g} / \mathrm{M}=48.00 \mathrm{~g} / \mathrm{M} \\
& \mathrm{Mw} \mathrm{H}_{3} \mathrm{PO}_{3}=81.99 \mathrm{~g} / \mathrm{M} \\
& \underline{5.000 \mathrm{~g}}=\frac{\mathrm{X}}{81.99 \mathrm{~g}} \quad \mathrm{X}=\mathbf{2 . 9 8 5 \mathrm { g } \mathrm { H } _ { 3 } \mathrm { PO } _ { 3 } \text { at } \mathbf { 1 0 0 \% } \text { Yield }} \\
& \overline{137.32 \mathrm{~g} / \mathrm{M}} \quad \overline{\mathrm{X}} \quad \overline{\mathrm{X}} .9 \mathrm{~g} / \mathrm{M} \\
& \mathrm{X}=2.985 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{3} \text { at } 100 \% \text { Yield } \\
& \text { [} 4 \text { sign digits] }
\end{aligned}
$$

